Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640105

RESUMO

This study aims to develop an optimally performing convolutional neural network to classify Alzheimer's disease into mild cognitive impairment, normal controls, or Alzheimer's disease classes using a magnetic resonance imaging dataset. To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. Subsequently, a convolutional neural network model comprising four convolutional layers and two hidden layers was devised for classifying Alzheimer's disease into three (3) distinct categories, namely mild cognitive impairment, Alzheimer's disease, and normal controls. The model was trained and evaluated using a 10-fold cross-validation sampling approach with a learning rate of 0.001 and 200 training epochs at each instance. The proposed model yielded notable results, such as an accuracy of 93.45% and an area under the curve value of 0.99 when trained on the three classes. The model further showed superior results on binary classification compared with existing methods. The model recorded 94.39%, 94.92%, and 95.62% accuracies for Alzheimer's disease versus normal controls, Alzheimer's disease versus mild cognitive impairment, and mild cognitive impairment versus normal controls classes, respectively.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Aumento da Imagem , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem/métodos
2.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146170

RESUMO

Human pose estimation has long been a fundamental problem in computer vision and artificial intelligence. Prominent among the 2D human pose estimation (HPE) methods are the regression-based approaches, which have been proven to achieve excellent results. However, the ground-truth labels are usually inherently ambiguous in challenging cases such as motion blur, occlusions, and truncation, leading to poor performance measurement and lower levels of accuracy. In this paper, we propose Cofopose, which is a two-stage approach consisting of a person and keypoint detection transformers for 2D human pose estimation. Cofopose is composed of conditional cross-attention, a conditional DEtection TRansformer (conditional DETR), and an encoder-decoder in the transformer framework; this allows it to achieve person and keypoint detection. In a significant departure from other approaches, we use conditional cross-attention and fine-tune conditional DETR for our person detection, and encoder-decoders in the transformers for our keypoint detection. Cofopose was extensively evaluated using two benchmark datasets, MS COCO and MPII, achieving an improved performance with significant margins over the existing state-of-the-art frameworks.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Movimento (Física)
3.
Math Biosci Eng ; 18(4): 3006-3033, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34198373

RESUMO

Multiple organizations would benefit from collaborative learning models trained over aggregated datasets from various human activity recognition applications without privacy leakages. Two of the prevailing privacy-preserving protocols, secure multi-party computation and differential privacy, however, are still confronted with serious privacy leakages: lack of provision for privacy guarantee about individual data and insufficient protection against inference attacks on the resultant models. To mitigate the aforementioned shortfalls, we propose privacy-preserving architecture to explore the potential of secure multi-party computation and differential privacy. We utilize the inherent prospects of output perturbation and gradient perturbation in our differential privacy method, and progress with an innovation for both techniques in the distributed learning domain. Data owners collaboratively aggregate the locally trained models inside a secure multi-party computation domain in the output perturbation algorithm, and later inject appreciable statistical noise before exposing the classifier. We inject noise during every iterative update to collaboratively train a global model in our gradient perturbation algorithm. The utility guarantee of our gradient perturbation method is determined by an expected curvature relative to the minimum curvature. With the application of expected curvature, we theoretically justify the advantage of gradient perturbation in our proposed algorithm, therefore closing existing gap between practice and theory. Validation of our algorithm on real-world human recognition activity datasets establishes that our protocol incurs minimal computational overhead, provides substantial utility gains for typical security and privacy guarantees.


Assuntos
Segurança Computacional , Privacidade , Algoritmos , Confidencialidade , Humanos , Projetos de Pesquisa
4.
Math Biosci Eng ; 18(4): 4772-4796, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198465

RESUMO

Distributed learning over data from sensor-based networks has been adopted to collaboratively train models on these sensitive data without privacy leakages. We present a distributed learning framework that involves the integration of secure multi-party computation and differential privacy. In our differential privacy method, we explore the potential of output perturbation and gradient perturbation and also progress with the cutting-edge methods of both techniques in the distributed learning domain. In our proposed multi-scheme output perturbation algorithm (MS-OP), data owners combine their local classifiers within a secure multi-party computation and later inject an appreciable amount of statistical noise into the model before they are revealed. In our Adaptive Iterative gradient perturbation (MS-GP) method, data providers collaboratively train a global model. During each iteration, the data owners aggregate their locally trained models within the secure multi-party domain. Since the conversion of differentially private algorithms are often naive, we improve on the method by a meticulous calibration of the privacy budget for each iteration. As the parameters of the model approach the optimal values, gradients are decreased and therefore require accurate measurement. We, therefore, add a fundamental line-search capability to enable our MS-GP algorithm to decide exactly when a more accurate measurement of the gradient is indispensable. Validation of our models on three (3) real-world datasets shows that our algorithm possesses a sustainable competitive advantage over the existing cutting-edge privacy-preserving requirements in the distributed setting.


Assuntos
Algoritmos , Privacidade , Aprendizado de Máquina , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA